(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fac(s(x)) → *'(fac(p(s(x))), s(x))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

S is empty.
Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
*'/1

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
fac, p

They will be analysed ascendingly in the following order:
p < fac

(8) Obligation:

Innermost TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
p, fac

They will be analysed ascendingly in the following order:
p < fac

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)

Induction Base:
p(gen_s:0'4_0(+(1, 0))) →RΩ(1)
0'

Induction Step:
p(gen_s:0'4_0(+(1, +(n6_0, 1)))) →RΩ(1)
s(p(s(gen_s:0'4_0(n6_0)))) →IH
s(gen_s:0'4_0(c7_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
fac

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fac(gen_s:0'4_0(+(1, n221_0))) → *5_0, rt ∈ Ω(n2210 + n22102)

Induction Base:
fac(gen_s:0'4_0(+(1, 0)))

Induction Step:
fac(gen_s:0'4_0(+(1, +(n221_0, 1)))) →RΩ(1)
*'(fac(p(s(gen_s:0'4_0(+(1, n221_0)))))) →LΩ(2 + n2210)
*'(fac(gen_s:0'4_0(+(1, n221_0)))) →IH
*'(*5_0)

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(13) Complex Obligation (BEST)

(14) Obligation:

Innermost TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n221_0))) → *5_0, rt ∈ Ω(n2210 + n22102)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
fac(gen_s:0'4_0(+(1, n221_0))) → *5_0, rt ∈ Ω(n2210 + n22102)

(16) BOUNDS(n^2, INF)

(17) Obligation:

Innermost TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n221_0))) → *5_0, rt ∈ Ω(n2210 + n22102)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
fac(gen_s:0'4_0(+(1, n221_0))) → *5_0, rt ∈ Ω(n2210 + n22102)

(19) BOUNDS(n^2, INF)

(20) Obligation:

Innermost TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))

Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)

Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)

(22) BOUNDS(n^1, INF)